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S U M M A R Y  
The application of the finite element method and Galerkin's principle to an open channel problem and a groundwater 
problem (determination of the boundary between fresh and salt water under an island in sea) is described. The pertaining 
differential equations are of nonlinear type. In order to avoid extensive computations the principle of sectional lineari- 
zation of nonlinear expressions is introduced, yielding satisfactory results. 

1. Introduction 

The finite element method (f.e.m.) proves to be a powerful technique for solving boundary 
value problems, as has been shown by many publications. Most of the applications lie in the 
field of solid mechanics. However, recently the f.e.m, finds also acceptance in flow problems, 
see for instance [1]. Here the application of the f.e.m, in combination with Galerkin's principle 
to two such problems is treated. 

The first one concerns nonstationary, one-dimensional, open channel flow, governed by a 
pair of nonlinear, first order differential equations, with the discharge and waterdepth as 
unknowns. Additional boundary conditions are given. By means of the f.e.m, the dependence 
of the variables with respect to the length coordinate is treated; a finite difference scheme is 
used in order to solve the resulting set of ordinary differential equations. 

The second part of the paper deals with a groundwater problem: the determination of the 
stationary boundary between fresh and salt water under a circular island in sea. This problem 
has been treated earlier by the present author ([2]). Ordinary, nonlinear, second order differential 
equations were derived for the mentioned boundary, which were solved numerically, using 
Runge Kutta's method. 

It appeared that the latter technique was not very suitable for this case due to the occurrence 
of instabilities. Only after many efforts and the application of some tricks a satisfactory solution 
could be achieved. For that reason the differential equations are solved once again, but now by 
means of the f.e.m. Hence a somewhat unusual, but - -as  appears--successful employ of the 
f.e.m, is made. 

Since the differential equations in both problems are of nonlinear type, the application of the 
f.e.m, leads to voluminous computations. In order to avoid extensive computational work, the 
principle of sectional linearization is introduced. The nonlinear expressions in the dependent 
variables, which are left after the application of the f.e.m, and Galerkin's principle, are linearized 
sectionally by means of a Taylor expansion. Then simplified equations are obtained. The 
corresponding loss of accuracy is mostly slight and vanishes if the number of elements 
increases. The principle is described in detail in the following sections. 

2. Open channel flow 

2.1. Formulation of the problem 

A straight, horizontal channel with a uniform, trapezoidal cross section is considered (figure 1). 
The channel connects a marsh with a river and serves as a drainage-canal for the marsh. It is 
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assumed that the marsh has a constant water-level and the river a periodical level. This periodi- 
city is due to the influence of the tides; the period is approximately 12 hours. A sluice separates 
the canal from the river. Only when the water-level in the river is below that in the channel 
near the sluice, the sluice opens. The discharge is related to the waterdepth on both sides of the 
sluice: this relation is available in tabulated form. By virtue of the boundary conditions the 
channel flow will be a periodic function of time. 

\ / 
T 

\ 
marsh ~ river 

, 

I 

0 k 

Figure 1. An outline and a cross section of the channel. 

The complete differential equations governing the problem are given in the handbooks 
[3]-[6]. They may be written in the form 

0q 0A 
8x + ~ f  O, 

q[qlo~ (1 lo/3 2 + A k,. 
q2 d l \  0y 2q Oq 

gA 3 dyy) Oxx + gA 2 0 x  

(2.1a) 

1 c3q 
- - - -  + g A  Ot  - O .  (2.1b) 

Here x represents the coordinate along the channel, t the time, q the discharge, y the waterdepth, 
A the wetted area, O the wetted perimeter, k m the Manning coefficient (a friction coefficient 
depending on the overgrowth on the bottom and banks) and g the acceleration of gravity. 
A and O are functions of y only (figure 1), with 

A = by + cy 2 , (2.2a) 

0 = b + dy ,  (2.2b) 

c = cotg 0, (2.3a) 

2 
d sin 0" (2.3b) 

The boundary condition at x = 0  reads 

y(0, t) = h,  (2.4) 

where h represents the water-level of the marsh with respect to the channel bottom. At the 
other end of the channel, x =  L, we have a relationship between the discharge qc = q(L, t), the 
waterdepth in the channel he= h(L, t) and the water-level hr(t) in the river. This level is a 
periodic function of time, 

2zrt 
hr = h -  a sin ~ - ,  (2.5) 
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where the period T equals 12 hours, he is given as a function of qc and h~ in tabulated form for 
hr < he. For hr __> h~ we have as boundary condition q~ = 0. A quadratic interpolation formula of 
the form 

hc = al +a2qc+ a3hr+a4qchr (2.6) 

is used between successive values of q~ and h~ in such a way that a continuous representation 
for he originates. 

The equations (2.1) are written in non-dimensional form by introducing the quantities 

2 = x/L,  ~ = y/h, ct = q/P, t = t i T .  (2.7) 

Here p is a unit of discharge, defined by 

p = (h 3 b 2 g)+. (2.8) 

With (2.7) the equations (2.1) transform into 
#q 0 
#~ + ct ~ (y+'Ty 2) = 0,  (2.9a) 

/3(l-I-6y)~ qlql 
y~ (1 + 7y) ~ 

~y 
+ {y3(1 +yy)3 _q2(1 +27y)} c~-x 

c~q= 
+ 2 q y ( l + T y ) ~  x + ~72(1+7y) 2 ~[ O. 

In (2.9), the bars are dropped, e, fl, 7 and c~ are constants, 

bhL Lg h 
- p T '  / ~ -  h ~k 2 '  7 = ~ c o t g 0 ,  6 -  

The boundary conditions read 

y(0, t)= 1, 
hc( t )=G{hr( t ) ,qc( t )} ,  hr< hc 

2h 
b sin 0" 

Condition (2.11b) represents the discharge relation for the sluice. 

(2.9b) 

(2.10) 

(2.11a) 
(2.11b) 

2.2. The finite element method and the principle of sectional linearization 

According to the f.e.m, the range 0 < x _< 1 is divided into N subranges [x,_ 1 ,  Xn], n = 1 ... N, 
with Xo = 0 and xN = 1. The length of the subrange Ix,_ 1, x,] is denoted by g,. Further a set of 
sectionally linear shapefunctions fro(X), m = 0  ... N, is defined (figure 2), with fm(X,)=6m,. 
Here 6m, represents the Kronecker 6. 

Applying Galerkin's principle with respect to 0_< x < 1, a set of approximate equations is 
derived, 

+ ~ ( y + y y  2 f ~ ( x ) d x = 0 ,  m = 0 . . . N ,  
0 

(2.12a) 

1 + 

fo L 

+2qy(1 +7Y) ~xx + ~y2(1 +7Y)2 fm(x)dx = O, 

with q(xl t) and y(x, t) approximated by 

m = 0 . . .  N (2.12b) 
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N 

q = Z qk(t)fk(X), (2.13a) 
k=0 

N 

y = ~ yk(t)fk(X). (2.13b) 
k=0 

By virtue of (2.11), two equations are dropped from the system (2.12). We may drop either the 
equation of the form (2.12a) for m = 0 and (2.12b) for m = N, or (2.12a) for m = N and (2.12b) for 
m = 0. Here the first possibility is chosen. However the choice of the equations that are dropped 
does not effect the results significantly, as is confirmed by the computations. 

fm 

1 

X o X 1 Xm-1 Xm Xm+l X'N-1 

Figure 2. The elements and shape-functions. 

Since the variables q and y in (2.12a) have small, positive, integer powers, the integrals in the 
left-hand side of these equations may be evaluated without any difficulty. We obtain 

� 8 9  Yl+2yo+~(y2+2ylYo+3y~) = 0,  (2.14a) 

d 
I9 +2Ym)+gm+l(Ym+l+2ym) + �89  + ~ m(Yrn--1 

(g,.(yL 2 1 l+2ymy, ,_ l  g~+l(ym+l+2y~ym+l+3y2)} = O, 

m = 1 ... N - l ,  (2.14b) 

where Yo = 1. 
In (2.12b) fractional powers and larger, integer powers occur. In order to avoid extensive 

computations, the terms in the expression between square brackets in (2.12b) are linearized 
sectionally. If s(y, q) is such a term, we linearize s(y, q) in the interval [xm- 1, xm+ 1] in the 
following manner, 

0s 0s 
s(y, q)~ s(ym, q~) + ~y(ym, qm)(Y--~Ym) + ~q (Ym, qm)(q--qm)" (2.15) 

From the approximations (2.13), we find for x~_ 1 < x <  x~, 

Y -  Y,. = (Y,.- Ym- 1)(f~-- 1), (2.16a) 

q -  q,, = (qm - q,,- ~ ) ( f , -  1). (2.16b) 

Replacing the subscript m -  1 by m + 1, analogous expressions for x~ < x < x~ + ~ are obtained. 
By means of (2.15) and (2.16) the integrations in (2.12b) may be performed easily. The resulting 

equations read, 
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Is { 6qm_l (_ 43 1 7 ) }  fl(l+6Y~)~qmlq~l 3 + + (Ym--Ym-1) + - -  + 
lSy~(1 + ?Jym) ~ " q,~ 1 +6y,, y,~ 1 +--yy,, 

{ 6qm+ 1 (__ 43 1 l ~ T y ~ )  } 1 +9m+1 3 + - -  +(Ym--Ym+l) - - + - - +  q,, 1 + 6y,, y,, 

+(Y,,--Ym-1) 1 2 [yym (1 + 7y,,) 2 {Ym-1 (1 + 2yy,.)-- yy~} -- ~ {(1 + 27ym) 
2 2 (qm + 2qmq,,- ~)-- 27qm(y,,-- y,,- a) } ] 

+ (Y~ +1 - Ym) [�89 (1 + yy,,,)2 {Ym +1 (1 + 27Ym)-- 7Y~} 

-- ~ { (l + 27y,,)(q2,. + 2qmq,~+ l)-- 27q2 (ym-- ym+ t) } ] 

+ �89 1){qmY~--l(l+ZTYm)+q~--lym(a+Yym)+q,,Y~} 

+ �89 a( 1 +2yym)+qm+ aYm(1 +~Y,.)+qmY,,} 

+ cog,, �89  + ~y~(l+Tym) 2 dt J 

I1 dq~ 
+ CCgm+a Ym(I+yY~){(I+2yym)Ym+a--yY2} dt 

I 2 dqm+l] = 0,  m =  1 N - l ,  (2.17a) + ~ym(I + yY")2 dt J "'" 

/ ( 4' flgN(I +6YN)~qNIqNI 3 -+ - -  + (YN--YN-1) + - -  + 
18y~ (1 + 7YN) ~ qN 1 + 6y N YN 

+ - y -l) Fly  (1 + yyN)2 {y _l (1 + 2yy )- yy l - + {(1 + 2yy ) 

(q~ + 2qN qN-1)-- 2yqg(yN-- YN-1) } ] 

+ ~ (qN--qu 1){qNYN-I (1 + 27yN)+qN_ 1 yN(1 + 3'YN)+qNYN ~ 

+ ~g~/�89 Yu (1 + 7Yu) { (1 + 2yyu)Yu-1 
/ 

dqu dqu- 1 --Ty 2} ~ -  + ~ y g ( l + T y N ) 2 - - ~ - j  = O. (2.17b) 

The differential equations (2.14) and (2,17) are solved simultaneously by means of an implicit, 
finite difference scheme, see [7]. Therefore the range t > 0 is divided into a number of subranges 
[ti, ti- 1], i=  1, 2 . . . .  , which all have an equal length At. A set of 2 N +  1 nonlinear equations 
results from (2,11), (2,14) and (2.17) for each time-interval [ti, ti-1] with q.(ti), i = 0  ... N and 
y.(tl), i= 1 ... N as unknowns. These equations are solved by means of Newton-Raphson's 
technique. The solution for t = ti_ 1 is the first approximation in the iteration scheme. 

2.3. Numerical results 

Numerical computations are performed for h = 1.4 m, a = 0.5 m and 0 = arctg 0.5. The remaining 
parameters, L, b and k,,, are variable. The computations are started with the constant initial 
situation y,,--1 and qm = 0, m = 0 ... N, and continued until a purely periodic behaviour is 
achieved. 

It appears that for the cases considered a sufficient accuracy (three or more significant digits 
in Ym and qm) exists for At= T/80 and N = 20. The intervals Ix._ 1, x.]  have an equal length. 
Some results concerning the interesting quantity q(x, t) are presented in the following plots. 
In figure 3, the discharge for x = 0, near the marsh, and the discharge through the sluice, denoted 
respectively by q(0) and q(L), are given during a period for 3 values of L. Here fixed values for 
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0 1 2 3 4 5 6 7 

Figure 3. The discharge at the ends for some values of L. 
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Figure 4. The discharge at the ends for some values of kin. 
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b : 1 2 m  
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Figure 5. The discharge at the ends for some values of b. 

8 9 10 11 12 h 

b and km are chosen. Figure 4 presents these quantities for 3 values of km and fixed L and b. 
At last in figure 5 results are given for fixed L and km and 3 values of b. 

In spite of the nonlinearity of the equations and the complexity of the boundary condition 
near the sluice, no problems occur with respect to the computations. For  increasing N and 
decreasing At, the solutions for q,, and Ym converge to limit functions, showing the expected 
physical phenomena. For all values of t the wavedepth and discharge in the channel are smooth 
functions without disturbances due to numerical instability. 

3. A groundwater problem 

3.1. Formulation of the problem 

We consider a circular island in sea. A cross section of the configuration is given in figure 6, 
which is copied from [2]. In this reference also a complete description is given. 

For each of the regions 0 < r < b, b < r < 1 and 1 _< r < d, a nonlinear ordinary differential 
equation was derived. In dimensionless form they are given by (5.2)-(5.4) in [2]. With the 
substitution h = -y~ ,  these equations transform into 

d (rdY) 2r(z+y)~=O ' l < r < d  
dr ~ c 

d tr~rrt 2r ~ dr - ;,c {? 'Y:+(7+ 1 ) z - ( D +  Qp In r-�89 ~} = O, 

(3.1a) 

b-< r_< 1, (3.1b) 

d(~f f )  2,. 
d5 - ;,c 1 7 " Y ~ + ( ~ + I ) z - ( ~ - � 8 9  0 -<  r_< b , .  (3.1c) 
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where 

v = z 2 + 

E = D+Qp In b ,  

and b, c, z, 7 and p are constants. The radius d is unknown. 

D. H. Keunin9 

(3.2a) 

(3.2b) 

..................................... r l f f . . . . ~  
II if 

t 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  �9 . . . . . .  l it  

Figure 6. Cross section of the island. 

The boundary  conditions read 

dy 
r = d ,  y = O , ~ r  = 0 ,  

r = l ,  y ( l + ) = y ( 1 - ) ,  ~ ( 1 + ) =  ~Yr(1-), 

r = b, y(b +)= y(b-),  b +) = (b-) + ~ ,  

dy 
r=O,  d r = O .  

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

3.2. The finite element method and the principle of sectional linearization 

The range [0, at] is divided into N subintervals Jr,_ 1, r , ] ,  n = 1 . . .  N, in such a way that 
r o -- 0, r K = b, r L = 1 and r N = d. K, L and N are integers such that  K < L < N. Again a set of 
shape-functions fro(r) is introduced, wi thfm(r , )= 6m,. These functions will be sectionally linear 
on the interval [0, rN- 1]. In order to accommodate  condit ion (3.3a) a quadrat ic  representation 
forfN- 1 andfN in [r N_ 1, d] is chosen. 

By means of Galerkin's principle and partial integration, we derive from (3.1) and (3.3), 

r Tr + dr=O, 

m = 0 . . .  K - l ,  (3.4a) 
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i 
t" K 

�9 r K 

dydf", o~rfm{7"y-}q-(Tq-1)z--(E--�89189 dr 
, r g T r +  

t" . . . .  I dydj~ f ~ *1 + r ~ r  dr + ~rf" , tT 'y~+(7+l)z-(D+Oplnr- �89 } dr 

Qp 
7 

(3.4b) 

,m , d7  + c~rfm{V'Y~+(v+l)z 

- ( D + Q p l n r - � 8 9  m = K + I , . . . L - 1 ,  (3.4c) 

r dy 4/;,, 1 ., ~, ctrdr + ~rfm{7"Y~+(Y+l)z-(D+Qplnr-�89 dr 

+ r ~ z  r + Tf,,(z+y~) dr=0 ,  (3.4d) 

..... , d r  + f",(z+y ~) d r = 0 ,  m = L + l  .... N .  (3.4e) 

where c~ = 2/(~/c). 
For m = 0 the lower bound r", _ 1 in (3.4a) must be replaced by 0 and for m = N the upper bound 

r",+ 1 in (3.4e) by d. The unknown y(r) is approximated by 
N 

y = E ykX(r). (3.5) 
k=O 

The nonlinear terms in the left-hand sides of (3.4) are linearized sectionally as far as necessary 
in order to evaluate the integrals in (3.4) analytically. Hence we use for [r,,_ z, rm+~] the 
approximations 

Y~ ~ (Y",)~ 0 + Y-Ym) (3.6a) 2ym ] '  
N 

(E--�89 ~ ~(E",) ~ {1 - �89 7(Y-Y~) } (3.6b) 
2(E,,,)~ 

(D+ Qp In r-~pr2- 7y)~ 

QP ( r - r , , ) -  21p(r2- r2) + 7 ( y -  Y",)~ 
(Din) ~ 1 + ~ s  (3.6c) 

2(D~) ~ J '  
where 

E", = z a + 7(yL-- y",)+�89 --r2)+ Qp In rK, (3.7a) 

Dm= z2+7(YL--Ym)+�89 In rm. (3.7b) 

Substituting (3.6) into (3.4), the integrals may be calculated easily for [0, r N_ 1]. 
The equations for the interval [r N_ ~, rN] are treated in a different manner. The shape- 

function fN 1 is defined by 

( r - d ~  z 
fu 1 = \ . q ,  ) ,  rx-1 < r=< r N. (3.8) 

Since yN=0, we have the following approximation for y in the interval [r N_ 1, rN], 
- d  : 

Y ~ Y N - , \ , q x  ) " (3.9) 
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The shape-function f u  is defined as 

fN = 1 - f N -  1, rN-1 < r _< r N . (3.t0) 

Using (3.9) and (3.10), the integrations for [r N_ 1, rN] may be performed without employing 
the principle of sectional linearization. 

Evaluating the integrals as described above, we obtain a system o fN  + 1 nonlinear algebraic 
equations. The unknowns are Ym, m = 0 ... N -  1 and the radius of the bubble, d. The interval 
lengths g,, are chosen as follows, 

/ 1 - b  
g, = ~ ,  n = K + l  . . . . .  L ,  

1 
[ d - - g N - - 1  
t N - L - - I '  n = L + l  . . . . .  N - l ,  

where gN is a constant which is independent of d. 
The resulting equations are solved by means of Newton-Raphson ' s  technique. 

3.3. Numerical  results 

The depth of the boundary between the fresh and salt water is computed for Q = 0, 0.0375 and 
0.1125. For the remaining parameters we take c =  12.5, 7=0.024, b=0.1,  z=0.0075 and p--- 
0.00017. Also for these values Runge-Kut ta ' s  method was applied, see [2]. 

Then initial values for Ym and d for Newton-Raphson ' s  scheme have to be chosen. In virtue 
of the experiences with this problem, a large sensitivity with respect to the choice of these values 
should not be unrealistic. That is, we expect that no convergence to the physically realistic 
solution will exist, if the initial values differ too much from it. However, computat ions show the 
contrary: the iteration scheme is rather insensitive for the initial values. For instance, starting 
with the analytical solution for c = 0  as given in [2], which is modified somewhat for r > 0.8, a 
convergent scheme is obtained for all mentioned values of Q. The solutions achieved agree 
perfectly with the ones given in [2] for K =  4, L =  14 and N--24.  They are shown by figure 5.1 
in this reference. 

It is striking that the f.e.m, yields the same solutions as Runge-Kut ta ' s  method, without 
exhibiting the numerical problems associated with the latter technique. Hence the computations 
performed confirm the power of the f.e.m. 
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